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Abstract—When a robot collaborates with people in groups,
its interaction with humans is expected to be fluent and efficient.
Augmenting a robot with the capacity to understand the activities
of the people it is collaborating with (with specific reference to
the timing of those activities), allows the robot to leverage its
understanding to generate an efficient and collaborative plan
to perform its actions. In this paper, we present a supervised
activity segmentation algorithm that can detect the start and
end time of activities, simply by observing a portion of the
initial trajectory data: an essential first step in generating an
efficient interaction plan for a robot. We validated the algorithm
by applying it to a collaborative task involving a single robot and
a single human. Results of this study indicate that the algorithm
accurately segments the activities in real time with approximately
80% accuracy (partially observing the full trajectory of a given
activity).

I. INTRODUCTION

Robots now have the capacity to help people in many areas,
from health care to assistive living to manufacturing and factory
settings. In many of these scenarios, robots are sharing physical
space and collaborate with people in teams [1, 2, 3]. The
performance of many of these teams depends on how fluently
all the members of a team can jointly perform tasks [4, 5, 6].
People are inherently skilled at coordinating with others - thus,
to be effective in teams with a human, a robot is also expected
to understand how people interact in teams and how joint or
collaborative actions are performed.

When a person acts alone, their behavior is very different
from when they coordinate in groups [7]. For human groups,
Sebanz et al. [8] defined joint actions as a form of interaction
where two or more members coordinate their actions in space
and time while making changes to their environment. The
authors described three important parts in a successful joint
action: a prediction about the intention of other interactional
partners, an understanding of when to act jointly, and an
understanding of where and how to perform the given action.

To successfully perform a joint action with people, a robot
requires the capacity to perceive other members actions,
perform predictions in time and space, and create adaptable
plans in real-time. Through understanding peoples’ interaction
and through anticipating their future needs, a robot can perform

a successful joint action with people by planning and scheduling
their activities and tasks intelligently [9, 10, 11]. In doing so,
the human-robot team can achieve a goal which neither the
human nor the robot can accomplish alone.

For example, a significant portion of assembly processes in
manufacturing involve the physical movement of raw materials
and finished products. Often, a worker who is performing an
assembly task is required to bring raw materials to and from an
assembly table where he or she assembles the parts. In these
circumstances, a person often needs to perform non-value added
tasks to keep the production line moving, which generates stress
and fatigue, while detracting from the efficiency of the task.
An introduction of a robot to this scenario will alleviate human
involvements in these non-value added tasks while attempting
to achieve goals efficiently while collaborating fluently.

If a robot has an understanding of human activities, it can
utilize its understanding to generate intelligent task assignments
and schedules. For example, Gombolay et al. developed a
centralized task assignment and scheduling algorithm, Tercio,
suitable for human-robot teams [12, 13]. Their algorithm
computes a multi-agent schedule in polynomial time which
satisfies the temporal deadlines as well as spatial constraints on
agent proximity. For a similar scenario, Zhang et al. [14, 15]
introduced four fairness criteria in multi-agent decision making
process under uncertainties.

Due to the unpredictable and dynamic nature of human
behavior, it is essential to have a robust understanding of current
and future activity timings for these scheduling algorithms to
run appropriately. As such, a robot now needs to solve another
problem: before it can utilize the planning and scheduling
algorithms, it must separate one activity from another in
real time correctly. This problem is defined as the activity
segmentation problem. For example, if a person moves to a
table and then picks up an object placed upon it, the robot
would need to begin to detect the activity as soon as the person
starts walking towards the table, understand when the person
reaches the table, and then understand when the person picks
the object up.

Researchers across many fields attempt to address the
problem of activity segmentation, and two primary approaches



have been explored: supervised and unsupervised segmentation
approaches. In a supervised segmentation approach, machine
learning algorithms are trained with segmented examples prior
to testing. In unsupervised methods, the algorithms do not use
labels or dictionaries.

Fearnhead and Liu [16, 17] proposed an online algorithm
for changepoint detection problems, by introducing a re-
sampling method similar to particle filters to reduce the
computational cost. To teach a robot appropriate skill structures,
Konidaris et al. [18] extended this idea to construct skill trees
to acquire skills from human demonstrations. In a similar vein,
Ryoo et al. [19] developed a supervised approach for early
recognition of activities from robot-centric videos during its
interaction with humans. They introduced the concept of onset
which summarizes pre-activity observations using a cascade
histogram of time series gradients. Their recognition approach
considered event history in addition to visual features from
videos to perform activities recognition.

On the other hand, Krishnan et al. [20] introduced an
unsupervised segmentation approach, known as the transition
state clustering (TSC) method. Their approach combined hybrid
dynamical systems and Bayesian non-parametric statistics
to segment kinematic actions of robotic surgical procedures.
Wu et al. [21] proposed an unsupervised algorithm which mod-
els high-level co-occurrences and temporal relations between
various human actions. They developed a probabilistic approach
by modeling short-term relationships between human actions
and objects to infer long-term activities. They then applied that
model to perform unsupervised activity segmentation.

Although these methods work for activity segmentation
in various scenarios, in our context, they either become
computationally expensive to run online, or can not work
adequately with a partial observance of data. In this paper, we
introduce a supervised activity segmentation algorithm which
utilizes an activity classification algorithm to detect the change
points (the start and the end time of an activity) in real-time.
We validated the algorithm by applying it to a human-robot
collaborative task. Initial results suggest that this proposed
algorithm can classify activities when partially observing data
as well as evaluating activity segments accurately in real-time
nearly with approximately 80% accuracy.

II. ACTIVITY SEGMENTATION METHOD

To get the start and the end time of each activity, it is
necessary to implement a mechanism for segmenting observed
human motion trajectories into discrete activities. We address
this challenge by introducing a real-time activity segmenta-
tion algorithm which can work by observing partial motion
trajectory data.

To perform activity segmentation from real-time sensor
data, our algorithm utilizes an activity classification algorithm,
which can classify trajectory data to an activity class. Our
segmentation algorithm can work with any activity classification
algorithm that can classify an activity from partial data. In this
implementation, we leverage a real-time activity classification
algorithm, Rapid Activity Prediction Through Object-oriented

Fig. 1: Intersection-over-union scores for all activity classes

Regression (RAPTOR), developed by Hayes and Shah [22],
which can classify an activity from partial data with high
confidence.

For partitioning human motion data into activity segments,
should the algorithm check all possible combinations of motion
class, the process would take an exponential time (an infeasible
outcome for real-time implementation on a robot). To perform
activity segmentation in real time, our proposed algorithm
leverages the prior knowledge of the task sequence to reduce
the number of searches; a capability introduced through the
utilization of Hierarchical Task Networks (HTN) [23].

This fast segmentation algorithm conducts activity classifi-
cation on a small partial segment of incoming trajectory data.
The algorithm keeps the classification results of these small
segments, and classify that segment as the class with the highest
likelihood value. When the likelihood of the next activity class
becomes higher than the current activity class, the algorithm
estimates a change point in the task sequence. By combining
all the adjacent partial segments classified as the same activity
together, the algorithm detects an activity segment.

Utilizing the prior task structure from the HTN, this
algorithm reduces the number of classifiers on which the
incoming trajectory data is tested (as a classifier is only used
to evaluate a trajectory when a task is supposed to occur at
that moment or at an upcoming time in the future). As a result,
this technique significantly reduces the number of classifiers
required to test the stream.

III. EXPERIMENTAL TESTBED AND RESULTS

To evaluate the performance of our segmentation algorithm,
we designed a dashboard assembly scenario in which a
manufacturing associate performed eight sequential tasks. The
activity classes are: move to the dashboard (mv_dash), move to
receive a speedometer object (mv_mete), get the speedometer
(get_mete), place the speedometer on the dashboard (pl_meter),
move to receive a navigation unit (mv_nav), get the navigation
unit (get_nav), place the navigation unit to the dashboard
(pl_nav), and exit from the space (exit).

The goal of the robot is to assist in the task by delivering
the speedometer and the navigation unit to the associate. To
achieve this, the robot needs to detect the associate’s activity
as soon as the activity begins.



TABLE I: Segmentation accuracy and IoU scores of our
algorithm

Activity Segmentation Result
Accuracy 79.47%

IoU 75.70%

During an experiment, the associate performed all eight
activities sequentially. The position and the orientation of a
total of seven objects (left hand, right hand, head, the dashboard,
the speedometer, the navigation unit, and a scanner gun) were
tracked using a VICON motion capture system.

We applied our algorithm to segment the activities in real-
time during this task. We captured a total of 16 instances of
these task sequences. We performed eight-fold cross-validation
to validate our method.

As the evaluation metrics, we measured the accuracy and
the intersection-over-union (IoU) scores of the algorithm. For
example, if the algorithm segments an activity from a trajectory
as S and the actual activity segment is GT, then the accuracy
(acc) and IoU are measured as:

acc =
S ∩GT

GT
∗ 100% and IoU =

S ∩GT

S ∪GT
∗ 100%

We present the results in Figure 1 (IoU only) and Table I.
The results suggest that our proposed algorithm can segment
activities in real-time with an average accuracy of 79.47% and
an average IoU score of 75.70%. The IoU scores are typically
more conservative than the accuracy scores.

IV. DISCUSSION

The initial results suggest that a robot can utilize our method
to segment activities in the very early stages of the activity with
only a portion of the trajectory. The results would also seek to
suggest the algorithm is capable of accurately identifying the
end of that activity in real-time. Building on this foundation, we
plan on developing intelligent task assignment and scheduling
algorithms to enable robots to perform their tasks around people
efficiently. We hope that this research will allow robots to be
more effective teammates in the future.
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